Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation
نویسندگان
چکیده
Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA-G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans.
منابع مشابه
Unconventional homologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals.
Internalization of a G-protein-coupled receptor (GPCR) is essential to the desensitization, endocytosis, and signal transduction of the receptor. It has been the general view that conventional homologous internalization of a GPCR requires activation of the G-protein(s) coupled to the receptor. However, whether and how GPCR-mediated G-protein-independent signals trigger receptor internalization ...
متن کاملA brief review on the evolution of GPCR: conservation and diversification
G-protein couple receptors (GPCR) possess diversified functions and they comprise a large protein superfamily in cellular signaling. Numerous identification methods for GPCR have been employed and versatile GPCR types are discussed. Although they share conserved transmembrane structural topology, alignment results of all GPCR show no significant sequence similarities. Each GPCR type distributes...
متن کاملNonenzymatic Rapid Control of GIRK Channel Function by a G Protein-Coupled Receptor Kinase
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gat...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملEukaryotic G protein signaling evolved to require G protein-coupled receptors for activation.
Although bioinformatic analysis of the increasing numbers of diverse genome sequences and amount of functional data has provided insight into the evolution of signaling networks, bioinformatics approaches have limited application for understanding the evolution of highly divergent protein families. We used biochemical analyses to determine the in vitro properties of selected divergent component...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 33 شماره
صفحات -
تاریخ انتشار 2016